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ABSTRACT

This report explores auditory modeling as a basis for robust automatic speaker verification.
Specifically, we have developed feature-extraction front-ends that incorporate (1) time-varying, level-
dependent filtering, (2) variations in analysis filterbank size, and (3) nonlinear adaptation. Our methods
are motivated both by a desire to better mimic auditory processing relative to traditional front-ends (e.g.,
the mel-cepstrum) as well as by reported gains in automatic speech recognition robustness exploiting
similar principles.

Traditional mel-cepstral features in automatic speaker recognition are derived from -20 invariant
band-pass filter weights, thereby discarding temporal structure from phase. In contrast, cochlear
frequency decomposition can be more precisely modeled as the output of -3500 time-varying, level-
dependent filters. Auditory signal processing is therefore more resolved in frequency than mel-cepstral
analysis and also derives temporal information. Furthermore, loss of level-dependence has been suggested
to reduce human speech reception in adverse acoustic environments. We were thus motivated to employ a
recently proposed level-dependent compressed gammachirp filterbank in feature extraction as well as
vary the number of filters or filter weights to improve frequency resolution. We are also simulating
nonlinear adaptation models of inner hair cell function along the basilar membrane that presumably
mimic temporal masking effects.

Auditory-based front-ends are being evaluated with the Lincoln Laboratory Gaussian mixture
model recognizer on the TIMIT database under clean and noisy (additive Gaussian white noise)
conditions. Preliminary results of features derived from our auditory models suggest that they provide
complementary information to the mel-cepstrum under clean and noisy conditions, resulting in speaker
recognition performance improvements.
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1. INTRODUCTION

Under a variety of adverse acoustic environments, automatic speaker recognition system
performance has been shown to degrade (e.g., [Reynolds, 1995]). In contrast, there is evidence that
human speech and speaker recognition under similar conditions remain robust [Lippmann, 1997],
[SchNielCry, 1998]. Presumably, human auditory processing is able to better extract salient speech
information under adverse conditions than standard automatic methods. Indeed, feature extraction
methods that mimic peripheral auditory processing have been shown under certain conditions to improve
robustness for automatic speech recognition [JanVL, 1995], [TchKoll, 1999].

We hypothesize that more complete auditory modeling may provide a basis for robust speaker
recognition. As a first step, we have explored feature extraction methods inspired from peripheral
auditory mechanisms that aim to address limitations of traditional front-ends in speaker recognition (e.g.,
the mel-cepstrum). To the extent that the central auditory system performs spectral modulation analysis,
these initial efforts may also provide an improved basis from which to derive such higher-level
representations. Preliminary work has accomplished the following:

1. Development of auditory-based feature extraction methods incorporating

* Variations in analysis filterbank size using auditory-like gammatone filters
* Time-varying, level-dependent filtering via gammachirp filters
* Nonlinear adaptation models

2. Baseline experiments in speaker recognition using features derived from our auditory front-end
renditions and contrasted against mel-cepstrum features, both in the clear and with additive
noise.

In this report, we describe in detail the above accomplishments and outline our future work in
further addressing our hypothesis of auditory processing as a basis for robust speaker recognition.



2. AUDITORY MODELING OVERVIEW

Human auditory processing occurs in multiple stages, beginning in the cochlea and auditory nerve
of the periphery to the nuclei of the brainstem and midbrain (e.g., cochlear nucleus, inferior colliculus)
and subsequently to high-level representations in the auditory cortex [Geisler, 1998][Pickles, 1988]
(Figure 1). The cochlea performs mechanical frequency analysis coupled to the summed auditory-nerve
outputs from inner hair cells. Physiological evidence has shown that the spectral content of speech is
represented in the firing rate and temporal synchrony of auditory nerve firings [Geisler, 1998]. Firing
patterns of the auditory nerve are subsequently transmitted through mid-level nuclei to high-level
processing centers. Temporal and modulation information has been shown to also be exhibited in these
areas [GiraudEtAl, 2000]. We emphasize that in this model the auditory nerve is the sole input to the rest
of the auditory pathway; thus, if we aim to exploit higher-level representations (e.g., spectral modulation)
similar to those derived in human processing, the peripheral model should be carefully chosen.
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Figure 1. Representation of the auditory pathway [KandelSJ, 2000]



In the traditional mel-cepstrum, spectral magnitude weighting is performed using -20 band-pass
filter weights followed by band-wise energy estimation. In relation to auditory processing, this roughly
corresponds to deriving rate information at the auditory nerve after frequency decomposition. A notable
discrepancy exists, however, in frequency resolution. Specifically, frequency decomposition in the
auditory system is often modeled as the output of -3500 band-pass filters rather than -20 filters. It has
been suggested that the loss of auditory nerve inputs results in poor speech reception, presumably due to a
reduced ability to represent spectral content [SchWoel, 1995]. In addition, by performing actual filtering,
auditory processing preserves temporal structure associated with signal phase composition while the mel-
cepstrum discards it. It has been shown that energy trajectories derived from weighting and filtering
are distinct, with those from filtering showing more clearly certain temporal aspects of speech
[Quatieri, 2001].

While filter weights of the mel-cepstrum are invariant, auditory filtering is notably nonlinear and
time-varying. Physiological and psychophysical evidence has shown that the gain and shape of auditory
filters is dependent on input sound level [Moore, 1997]. This nonlinearity presumably results from active
mechanisms in the cochlea in response to sound [Geisler, 1998]. It has been suggested that loss of this
nonlinearity can account for psychophysical results related to reduced speech reception in adverse
acoustic environments [OxenBac, 2003].

We hypothesize that the loss of temporal structure and lack of nonlinearity in the mel-cepstrum
limits the robustness of automatic speaker recognition, and were thus motivated to incorporate time-
varying, nonlinear filtering in feature extraction. Specifically, our objective at the cochlear level was to
implement a recently proposed gammachirp filterbank shown to simulate psychophysical and
physiological data [IrinoPat, 2006]. In addition, we sought to explore the effects of improving frequency
resolution by varying the number of filterbank weights in the context of the traditional cepstral features;
this was done using static auditory-like (gammatone) filters. These front-end components are illustrated in
Figure 2 with the static gammatone filters, the level-dependent gammachip-filter rendition, and the hair
cell model (to be subsequently discussed).

Also shown in Figure 2 are two additional components of our complete auditory model: (1)
Synchrony computation that will couple with a complex spectral modulation representation (e.g., the
Atlas representation [SchimmAtlas, 2005]) and (2) a modulation filterbank that emulates the mid-level
inferior colliculus operation of the auditory pathway [DauKK, 1997]. Ultimately, we will also add to our
previously-developed notions on how the high-level auditory regions may process modulation in a two-
dimensional time-frequency space [Quatieri, 2002].
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3. CEPSTRAL FEATURES WITH IMPROVED FREQUENCY RESOLUTION

Our initial effort was motivated by the possibility that the human auditory system exploits a large
number of frequency channels to achieve robustness in speech-related tasks. Specifically, we studied the
effects of improving frequency resolution by increasing the number of analysis filter weights used in
feature extraction.

3.1 FEATURE EXTRACTION

Speech data were initially pre-emphasized with a frequency-domain weighting function'. Features
were then extracted as in the mel-cepstrum (i.e., spectral magnitude weighting followed by a discrete-
cosine transform (DCT) of band-wise log-energies), though with increasing number of filter magnitude
weights. We chose this implementation to assess the effects of improved frequency resolution,
independent of additional auditory modeling components. Static gammatone filterbank weights were
initially used and covered the same frequency region of the standard (mel-cepstrum) triangular filters
[Slaney, Toolkit] (Figure 3). We then generalized this static gammatone set from -24 filters to an
arbitrary number by sampling a nonlinear continuous function representing the logarithmic relation
between basilar membrane location and center frequencies and their bandwidths. Because the feature
dimensionality grows with increasing filter number, we explored two different approaches:

1. Allow the dimensionality to grow with increasing filterbank size.

2. Trim the dimensionality by keeping only the first 19 DCT coefficients (excluding the 0th

coefficient).

The pre-emphasis function is given by P(f) = I +f 2 / 25000 withf being continuous-time frequency.
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Figure 3. Equal-energy normalized linear gammatone filters.

3.2 BASELINE RECOGNITION EXPERIMENTS

Preliminary results (Figure 4) in varying gammatone filterbank size do not show a significant
correlation between number of filters and speaker recognition performance. We used in this initial
experiment the TIMIT corpus with 256 target speakers [FisherDG, 1986]. TIMIT was recorded in the
clear at a 16k sampling rate, is phonetically balanced, and has a good representation of speaker types and
dialects. We chose TIMIT as our initial testing copus in order to isolate the importance of the candidate
features themselves without influence from uncontrolled background or channel distortion.

The classifier used is the Lincoln GMM-UBM system, and no channel or score compensation is
applied [ReyQuatDunn, 2002]. The background model was trained with 168 TIMIT speakers, equally
distributed with males and females, with 10 TIMIT utterances for each speaker. There were 137 female
and 326 male target speakers, with eight training utterances and two test utterances for each. In these
experiments, we used the above trimmed and untrimmed versions of our DCT coefficients, giving 19
coefficents (trimmed) and N = filterbank size (-1) (untrimmed), respectively. The general equal error rate
(ERR) performance in these two cases (Figure 4), both for males and females, is close to that of the
standard 1 9th-order mel-cepstrum features (not shown).

Though this result may reflect the sufficiency of frequency resolution of the mel-cepstrum, we do
not believe this to be true. With trimming, the lack of performance gains may stem from our method of
feature reduction. Without trimming, the number of filters corresponds to the total number of features
derived in cepstral analysis. In the first case, we sought to avoid the "curse of dimensionality" in pattern
recognition by using only the first 19 coefficients (excluding the zeroth value) as in the DCT. It is unclear
whether this "trimming" of coefficients effectively exploits the large number of channels available. With
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no trimming, although more speech information is available, we may have encountered the curse of
dimensionality, in particular, for a GMM-based classifier. Other classifiers, such as support vector
machines, may thwart this dimensionality tradeoff [CampSRS, 2006].
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Figure 4. Speaker verification performance with static gammatone filtering with increasing filterbank size. Equal
error rate (EER) is shown.

It is interesting to observe in Figure 4 the performance gap between males and females. This gap
has also been found in previous studies with the use of mel-cepstrum features in speaker recognition. A
speculation was that by increasing the size of the front-end filterbank, we might reduce the effect of
aliasing in the DCT, occurring for high pitch with sparse spectral sampling, and thus with trimming
improve the accuracy of low-DCT coefficients. It appears, however, that under-sampled formant
information cannot be recovered by a single-frame representation, and that alternate methods such as
exploiting temporal signal modulation may be the key to reducing this gender gap.
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4. AUDITORY-BASED FEATURE EXTRACTION USING TIME-VARYING
NONLINEAR FILTERS

In the previous section, we studied the effects of improving frequency resolution using the static
component (i.e., the gammatone) of the level-dependent gammachirp for spectral magnitude weighting
and reported on baseline speaker recognition experiments. In this section, we consider a more complete
peripheral auditory model by including the chirp component of the gammachirp filterbank, level-
dependent compression, and two different hair cell models, one by Dau et al. [DauPK, 1996] and the
other by Meddis [Meddis, 1986]. In addition, we perform a variety of baseline speaker recognition
experiments using features derived from these various auditory models, both in the clear and in noise.
Based on our recognition results from Section 3.2, when investigating filterbank size, we will invoke the
trimmed case only.

4.1 AUDITORY-BASED FEATURE EXTRACTION IMPLEMENTATION

Model components were assessed individually and in combination for feature extraction. Pre-
emphasis was initially performed on speech data using a first-difference operation2 .

Level-dependent filtering: Distinct from the previous section, features from the auditory model
are derived from actual filtering rather than spectral magnitude weighting (see Section 2). The
gammachirp filter that we have implemented is composed of three cascaded infinite-impulse-response
(IIR) filters: a linear gammatone filter (from our previous section), a passive low-pass asymmetry, and a
level-dependent asymmetry (Figure 5). The level-dependent asymmetry with the passive asymmetry
modifies the shape and gain of the filter based on input level (Figure 6); with increasing input levels,
gains are reduced while bandwidths are increased.

2 The pre-emphasis function in discrete time is given by y[n] = x[n] - 0.97x[n -1]
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In filtering, the signal is filtered through parallel paths to determine the filtered result while
estimating the input level (Figure 7). Level-estimation is done using a fast-attack slow-decay function that
follows an input level to a local maximum and then decays according to a half-life parameter (Figure 8)
[IrinoPat, 2006].

For each feature case, the envelope of the filtered speech signal from each auditory channel
(derived from the Hilbert transform3) is low-pass smoothed and down-sampled, and is followed by the
DCT analysis. The low-pass filter cutoff used in envelope smoothing is set consistent with downsampling
to a 10-ms frame interval. Although smoothing reduces temporal resolution, it is essential to avoid
aliasing in a feature representation.
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Figure 7. Level-dependent filter implementation.

SOther possibilities exist for envelope calculation. For example, rectification and low-pass filtering may be closer to actual

auditory processing.
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Figure 8. Example of fast-attack slow-decay estimation of level: (top) input pressure, (bottom) estimated control
parameter. Units are normalized.

Cochleograms 4 derived using the gammachirp filter have been suggested to accentuate salient
features of speech [IrinoPat, 2006]. Our preliminary work has compared the outcome of the gammachirp
filters with traditional mel-cepstral filters. Figures 9 and 10 show cochleograms derived using 1) energy-
equalized mel-cepstral filters, i.e., standard triangularly-shaped static filters, 2) gammachirp filters (with
level-dependence), and 3) energy-equalized passive gammachirp filters (without level-dependence, i.e.,
the static gammatone case) for a speech utterance in the presence of additive Gaussian white noise for
several signal-to-noise ratios (SNR) and under a clean condition. Responses are similar under clean and
near-clean conditions, while the gammachirp notably exhibits less relative distortion in higher frequency
channels as SNR decreases. Although these results appear promising for robust feature extraction, a

4A correlogram is a time-frequency distribution derived from output envelopes of an auditory-like filterbank.
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significant caveat is that differences in distortion were not present for all of the speech utterances
examined. Further work is needed in examining the mechanisms leading to these differences to assess
how they may be exploited for robust feature extraction.
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Figure 9. Cochleograms derived from (top) mel-, (middle) gammachirp, and (bottom) passive-gammachirp filters
for clean speech utterance, "l'l print out all their records."
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Figure 1O. Same as Figure 9 but with SNR = 30 (left-top), 20 (right-top), 10 (left-bottom), and 0 dB (right-bottom).

Nonlinear adaptation: Activity at the auditory-nerve level, allowing spectral and temporal

representations of speech, results from the synaptic release processes of the inner hair cell [Geisler, 1998].
The dynamics of these processes results in unique temporal characteristics of auditory nerve activity
collectively referred to as adaptation. As observed for sustained stimuli (e.g., a pure tone), post-stimulus
time histograms of auditory-nerve activity exhibit sharp onsets followed by compression; furthermore, at

the stimulus offset, an overshoot of reduced activity is present (Figure 11). In the context of feature
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extraction from the envelope of an analysis filterbank, a notable distinction between nonlinear adaptation
and the log function used in cepstral analysis is the enhancement of transient behavior (Figure 11)
[QuatMS, 2003]. Furthermore, it is likely that adaptation is responsible for the psychophysical
phenomenon of masking. Reported gains in automatic speech recognition (ASR) noise robustness when
this nonlinearity is incorporated in feature extraction are presumably the result of these distinctions
[TchKoll, 1999].

In combination with the gammachirp filterbank, we have evaluated two models of nonlinear
adaptation for use in feature extraction for speaker recognition: The first is the inner hair cell model by
Dau, Puschel, and Kohlrausch (DPK) [DauPK, 1996] and the second by Meddis [Meddis, 1986]. The
DPK model is derived from psychophysical results in forward masking. The Meddis model is based on
purported mechanisms of synaptic transmission and is fit to physiological data. Acting on the envelope
from the gammachirp filter output, both models are used in place of the log function in cepstral analysis;
all other aspects of feature extraction are identical to those discussed in the following section.
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Figure 11. Input envelope (top) and response of Meddis hair cell model simulating adaptation (middle). The log-
compression (bottom) with minimum value clipped at - -3 normalized amplitude for comparison.
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4.2 BASELINE RECOGNITION EXPERIMENTS

In our speaker recognition experiments, we again used the TIMIT corpus. Experimental setup is the
same as that given in Section 3.2 for the clean condition. For noisy conditions, Gaussian white noise was
added to training and testing data. Feature extraction involved (1) increasing filterbank size in noise with
the level-dependent gammachirp alone, and (2) inclusion of the DPK and Meddis adaptation models with
the level-dependent gammachirp. Resulting scores are compared to the mel-cepstrum.

Preliminary equal-error-rate (EER) results in varying filterbank size in noise are shown in Figures 12 and
13. Mel-cepstral features are derived using the traditional frequency weighting pre-emphasis
P(]) = 1 +f 2 / 25000 while the gammachirp employs the first-difference (y[n] = x4n] -0.97x[n--1]). Both
feature sets are derived from the static gammatone weights (see Section 3). We used the trimmed versions
of our DCT coefficients, giving 19 coefficients, which is smaller than the full DCT length. The technique
of trimming was introduced in the previous section. For this scenario, our preliminary results do not show
a significant correlation between number of filters and performance for both mel-cepstral weighting and
level-dependent gammachirp-filtering front-ends. Furthermore, results show similar performance between
the mel-filter and gammachirp cases, although the mel-cepstrum overall performs slightly better.

As we argued for the static gammatone results, we believe the results of the gammachirp reflect
insufficiency in our dimensionality reduction method of "trimming" rather than the sufficiency of the
mel-cepstrum's frequency resolution.
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Figure 12. Equal error rate (EER) performance for the mel-cepstrum with increasing filterbank size in noise
(derived from the static gammatone).
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Figure 13. Equal error rate (EER) performance for level-dependent gammachirp filtering with increasing filterbank
size in noise.

For a stricter comparison, Figure 14 shows results from level-dependent gammachirp filtering with
the mel-cepstrum derived from traditional triangular critical-band weights. Pre-emphasis is the same in
both cases, employing the first-difference. Filterbank size was set to 24 with trimming to 19 DCT
coefficients in both cases, as is typically done in the mel-cepstrum. We obtain reductions in EER ranging
from 0.5-2% with fusion of the scores (equal weighting) with greater gains at lower SNR. The
comparable performance of the gammachirp with the mel-cepstrum and the gains obtained with fusion
suggest that the gammachirp filtering may provide complementary information to the mel-cepstrum.

Finally, our initial comparison of nonlinear adaptation models shows that the Meddis model
consistently outperforms the DPK in speaker verification, though both are less robust than the mel-
cepstrum. The comparative EER results are shown in Figure 15 for males, along with the result of score-
fusion of Meddis- and mel-cepstrum-based features (showing negligible fusion gain). Similar relative
gains hold for females. That the Meddis model is higher performing than the DPK is perhaps due to
inherent weaknesses of the DPK as a purely phenomenological model. Specifically, it has been shown
that its response to transient behavior and its choice of parameters are physiologically implausible 5. The
performance gap between the mel-cepstrum and the Meddis model may be attributed to limitations of our

Thanks to Nicolas Malyska for a personal communication.
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current feature extraction methods in mimicking auditory processing, assuming of course that auditory
processing is our "gold standard." Most notably, the Meddis model is derived from physiological
responses to acoustic stimulation. Nonlinearities in auditory filtering are therefore already incorporated
via the model's choice of parameters. By acting on the envelope of the gammachirp, filtering
nonlinearities are likely twice represented, thereby distorting the auditory representation of the signal.

- mtcc1
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Figure 14. (top) Level-dependent gammachirp-filter (ldsc) and mel-cepstrum (mfcc) EER scores for males (m) and
females W9 under clean (SNR = 62) and noisy conditions (SNR = 0 - 30); (bottom) performance gains obtained with
fusion. Filterbank size = 24 in both methods.

20



DPK vs. Meddis (TIMIT Males)20 ___________

V Meddism

a DPK.

15 -- 4-- MFCC=-A MFCC+Meddls.

0

0 20 40 60 60
SNR, 62 = Clean

Figure 15. Performance comparison of Meddis versus DPK nonlinear adaptation, along with score fusion with
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21



5. FUTURE EFFORTS

In summary, preliminary results suggest that incorporation of level-dependent filtering in feature
extraction may provide complementary information to the mel-cepstrum in noise. Nevertheless, we have
only touched upon the use of auditory modeling for speaker recognition. Our work has raised a multitude
of questions to be answered in future work.

We will explore a number of approaches to better understand how auditory processing results in
robust representations of speech in noise. For example, we have observed that gammachirp filtering is
able to reduce the effects of noise for certain speech segments but not others. One possible explanation for
this limitation is the "open-loop" nature of the model, unlike the actual "closed-loop" periphery consisting
of descending efferent feedback from central pathways. Both physiological and psychophysical evidence
suggest that efferent stimulation plays a role in noise suppression. Stimulation reduces auditory filter
gains and enhances auditory nerve responses to transients in noise [KawaseEtAl, 1993]. In addition,
speech-in-noise reception benefits from activation of efference in humans [GiraudEtAl, 1997].
Incorporation of a control component similar to efference with gammachirp filtering may therefore allow
more robustness in our auditory representations.

Our current frontend also utilizes the envelope from filtering to derive the speech spectrum while
discarding potential contributions from temporal synchrony (i.e., auditory nerve phase-locking).
Synchrony-derived representations, however, have been shown to be more robust in noise for automatic
speech recognition than rate-based methods (e.g., [Ghitza, 1987]). Our future work will explore the
explicit incorporation of neural synchrony as a means to improve robustness.

Limitations of our current front-end will also be addressed in the general scope of speaker
recognition. Specifically, incorporation of models that exclusively mimic synaptic transmission (e.g.,
[SumnerLPMM, 2002]) with gammachirp filtering would eliminate the nonlinear redundancy previously
noted and better mimic auditory processing. To better exploit larger filterbanks, two possible directions
are to utilize traditional dimensionality reduction methods (e.g., principle components analysis) or to
employ machine learning paradigms shown to be robust to large feature size (e.g., support vector
machines [CampSRS, 2006]). Alternatively, outputs of peripheral filtering could be used in conjunction
with models of higher processing centers in the auditory pathway in the reduction of dimensionality, as
has been suggested by Yang, et al. [YanWanSha, 1992].

Our future work will also involve integration of our auditory-based approach with a complex
modulation envelope approach (such as that by Atlas [SchimmAtlas, 2005]) by introducing neural
synchrony, Ghiza's modulation bandwidth paradox [Ghitza, 2001], and Dau et al.'s modulation filterbank
interpretation of the inferior colliculus [DauKK, 1997]. Ultimately, we will also introduce two-
dimensional processing speculated to occur in high-level auditory mechanisms [Quatieri, 2002]. In all
future work, although some testing will be done in the clear, our emphasis will be on furthering our
understanding of auditory processing of modulation in noise environments and testing our feature
extraction in these environments.
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